Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.337
Filtrar
1.
Virol J ; 21(1): 83, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600532

RESUMO

BACKGROUND: Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS: To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT: We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS: This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Egito/epidemiologia , Filogenia , Evolução Molecular , Aminoácidos/genética
2.
Biochem Biophys Res Commun ; 710: 149878, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608492

RESUMO

Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.


Assuntos
Sapovirus , Vacinas , Criança , Humanos , Sapovirus/genética , Proteínas do Capsídeo/genética , Filogenia , Aminoácidos/genética , Genótipo , Fezes
3.
Methods Mol Biol ; 2760: 209-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468091

RESUMO

Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain's biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.


Assuntos
Aminoacil-tRNA Sintetases , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Código Genético , Aminoácidos/genética , Aminoácidos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/metabolismo
4.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426726

RESUMO

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Assuntos
Infecções por Henipavirus , Henipavirus , Receptores Virais , Humanos , Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Proteínas de Transporte/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epitopos/genética , Epitopos/metabolismo , Gana , Vírus Hendra/metabolismo , Henipavirus/classificação , Henipavirus/genética , Henipavirus/metabolismo , Mutagênese , Vírus Nipah/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Receptores Virais/metabolismo
5.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470155

RESUMO

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Assuntos
Vírus da Influenza A , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Lisina/genética , Montagem de Vírus/genética , Genoma Viral , Aminoácidos/genética , Proteínas do Nucleocapsídeo/genética , RNA Viral/metabolismo
6.
J Virol ; 98(4): e0060323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517165

RESUMO

Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and ß-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, ß-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 3 , Animais , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Mutagênese , Replicação Viral , Infecções por Herpesviridae/genética , DNA/metabolismo , Aminoácidos/genética , Mamíferos/genética
7.
Genes Genomics ; 46(5): 601-611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546934

RESUMO

Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.


Assuntos
Tenebrio , Animais , Humanos , Tenebrio/genética , Peroxidases/genética , Filogenia , Proteínas/genética , Aminoácidos/genética
8.
Sci Rep ; 14(1): 6763, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514707

RESUMO

The strongest genetic risk factor for rheumatoid arthritis (RA) has been known as HLA-DRB1 based on amino acid positions 11, 71, and 74. This study analyzed the association between specific HLA-DRB1 locus and treatment response to abatacept or TNF inhibitors (TNFi) in patients with seropositive RA. A total of 374 Korean RA patients were treated with abatacept (n = 110) or TNFi (n = 264). Associations between HLA-DRB1 and treatment response after 6 months were analyzed using multivariable logistic regression. Seropositive RA patients with HLA-DRB1 shared epitope (SE) had a favorable response to abatacept (OR = 3.67, P = 0.067) and an inversely associated response to TNFi (OR 0.57, P = 0.058) based on EULAR response criteria, but the difference was not statistically significant in comparison to those without SE. In analyses using amino acid positions of HLA-DRB1, a significant association was found between valine at amino acid position 11 of SE and good response to abatacept (OR = 6.46, P = 5.4 × 10-3). The VRA haplotype also showed a good response to abatacept (OR = 4.56, P = 0.013), but not to TNFi. Our results suggest that treatment response to abatacept or TNFi may differ depending on HLA-DRB1 locus in seropositive RA, providing valuable insights for selecting optimal therapy.


Assuntos
Artrite Reumatoide , Inibidores do Fator de Necrose Tumoral , Humanos , Abatacepte/farmacologia , Abatacepte/uso terapêutico , Abatacepte/genética , Cadeias HLA-DRB1/genética , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Epitopos/genética , Aminoácidos/genética , Alelos , Predisposição Genética para Doença
9.
PLoS Genet ; 20(3): e1011155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466751

RESUMO

Antimicrobial peptides (AMPs) are at the interface of interactions between hosts and microbes and are therefore expected to be rapidly evolving in a coevolutionary arms race with pathogens. In contrast, previous work demonstrated that insect AMPs tend to evolve more slowly than the genome average. Metchikowin (Mtk) is a Drosophila AMP that has a single amino acid residue that segregates as either proline (P) or arginine (R) in populations of four different species, some of which diverged more than 10 million years ago. These results suggest that there is a distinct functional importance to each allele. The most likely hypotheses are driven by two main questions: does each allele have a different efficacy against different specific pathogens (specificity hypothesis)? Or, is one allele a more potent antimicrobial, but with a host fitness cost (autoimmune hypothesis)? To assess their functional differences, we created D. melanogaster lines with the P allele, R allele, or Mtk null mutation using CRISPR/Cas9 genome editing and performed a series of life history and infection assays to assess them. In males, testing of systemic immune responses to a repertoire of bacteria and fungi demonstrated that the R allele performs as well or better than the P and null alleles with most infections. Females show some results that contrast with males, with Mtk alleles either not contributing to survival or with the P allele outperforming the R allele. In addition, measurements of life history traits demonstrate that the R allele is more costly in the absence of infection for both sexes. These results are consistent with both the specificity hypothesis (either allele can perform better against certain pathogens depending on context), and the autoimmune hypothesis (the R allele is generally the more potent antimicrobial in males, and carries a fitness cost). These results provide strong in vivo evidence that differential fitness with or without infection and sex-based functional differences in alleles may be adaptive mechanisms of maintaining immune gene polymorphisms in contrast with expectations of rapid evolution. Therefore, a complex interplay of forces including pathogen species and host sex may lead to balancing selection for immune genotypes. Strikingly, this selection may act on even a single amino acid polymorphism in an AMP.


Assuntos
Anti-Infecciosos , Drosophila , Masculino , Feminino , Animais , Drosophila/genética , Drosophila melanogaster/genética , Alelos , Aminoácidos/genética , Polimorfismo Genético
10.
Anim Biotechnol ; 35(1): 2331179, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38519440

RESUMO

Despite the significant threat of heat stress to livestock animals, only a few studies have considered the potential relationship between broiler chickens and their microbiota. Therefore, this study examined microbial modifications, transcriptional changes and host-microbiome interactions using a predicted metabolome data-based approach to understand the impact of heat stress on poultry. After the analysis, the host functional enrichment analysis revealed that pathways related to lipid and protein metabolism were elevated under heat stress conditions. In contrast, pathways related to the cell cycle were suppressed under normal environmental temperatures. In line with the transcriptome analysis, the microbial analysis results indicate that taxonomic changes affect lipid degradation. Heat stress engendered statistically significant difference in the abundance of 11 microorganisms, including Bacteroides and Peptostreptococcacea. Together, integrative approach analysis suggests that microbiota-induced metabolites affect host fatty acid peroxidation metabolism, which is correlated with the gene families of Acyl-CoA dehydrogenase long chain (ACADL), Acyl-CoA Oxidase (ACOX) and Acetyl-CoA Acyltransferase (ACAA). This integrated approach provides novel insights into heat stress problems and identifies potential biomarkers associated with heat stress.


Assuntos
Aves Domésticas , Transcriptoma , Animais , Aves Domésticas/genética , Aves Domésticas/metabolismo , Peroxidação de Lipídeos/genética , Jejuno/metabolismo , Galinhas/genética , Galinhas/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Lipídeos , Aminoácidos/genética , Aminoácidos/metabolismo
11.
Vet Res ; 55(1): 36, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520035

RESUMO

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Assuntos
Doenças dos Cavalos , Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas , Cavalos , Animais , Humanos , Vírus da Influenza A Subtipo H3N8/genética , Paris , Fatores de Virulência , Reprodutibilidade dos Testes , Infecções por Orthomyxoviridae/veterinária , Análise de Sequência/veterinária , Genômica , Aminoácidos/genética
12.
Chimia (Aarau) ; 78(1-2): 22-31, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430060

RESUMO

Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , Engenharia de Proteínas/métodos , Aminoácidos/genética , Aminoácidos/química , RNA de Transferência/genética
13.
Emerg Microbes Infect ; 13(1): 2332652, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517705

RESUMO

A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Aviária , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Aminoácidos/genética , Interações entre Hospedeiro e Microrganismos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Furões , Vírus da Influenza A/metabolismo , Aves , Nucleotidiltransferases , Replicação Viral/genética , Filogenia
14.
Arch Virol ; 169(4): 75, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492088

RESUMO

Fusarium oxysporum is a widespread plant pathogen that causes fusarium wilt and fusarium root rot in many economically significant crops. Here, a novel dsRNA virus tentatively named "Fusarium oxysporum virus 1" (FoV1) was identified in F. oxysporum strain 3S-18. The genome of FoV1 is 2,944 nucleotides (nt) in length and contains two non-overlapping open reading frames (ORF1 and 2). The larger of these, ORF2, encodes an RNA-dependent RNA polymerase (RdRp) of 590 amino acids with a molecular mass of 67.52 kDa. ORF1 encodes a putative nucleocapsid protein consisting of 134 amino acids with a molecular mass of 34.25 kDa. The RdRp domain of FoV1 shares 60.00% to 84.24% sequence identity with non-segmented dsRNA viruses. Phylogenetic analysis further suggested that FoV1 is a new member of the proposed genus "Unirnavirus" accommodating unclassified monopartite dsRNA viruses.


Assuntos
Micovírus , Fusarium , Vírus de RNA , Fusarium/genética , Vírus de RNA de Cadeia Dupla/genética , Filogenia , Genoma Viral , Micovírus/genética , RNA Polimerase Dependente de RNA/genética , Fases de Leitura Aberta , Fungos , Aminoácidos/genética , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética
15.
Nucleic Acids Res ; 52(5): 2130-2141, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38407292

RESUMO

Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.


Assuntos
Aminoaciltransferases , Eucariotos , Glicina , Biossíntese de Proteínas , Aminoácidos/genética , Aminoaciltransferases/genética , Glicina/genética , Aminoacil-RNA de Transferência/metabolismo , Pesquisa , Bioquímica , Eucariotos/química , Eucariotos/genética
16.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(6): 557-564, 2024 Feb 01.
Artigo em Chinês | MEDLINE | ID: mdl-38413016

RESUMO

OBJECTIVE: To investigate the prevalence of single nucleotide polymorphisms (SNPs) of artemisinin resistance-related Pfubp1 and Pfap2mu genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea, so as to to provide baseline data for the formulation of malaria control strategies in Bioko Island. METHODS: A total of 184 clinical blood samples were collected from patients with P. falciparum malaria in Bioko Island, Equatorial Guinea from 2018 to 2020, and genomic DNA was extracted. The Pfubp1 and Pfap2mu gene SNPs of P. falciparum were determined using a nested PCR assay and Sanger sequencing, and the gene sequences were aligned. RESULTS: There were 159 wild-type P. falciparum isolates (88.83%) from Bioko Island, Equatorial Guinea, and 6 SNPs were identified in 20 Pfubp1-mutant P. falciparum isolates (11.17%), in which 4 non-synonymous mutations were detected, including E1516G, K1520E, D1525E, E1528D. There was only one Pfubp1gene mutation site in 19 Pfubp1-mutant P. falciparum isolates (95.00%), in which non-synonymous mutations accounted for 68.42% (13/19). D1525E and E1528D were identified as major known epidemic mutation sites in the Pfubp1 gene associated with resistance to artemisinin-based combination therapies (ACTs). At amino acid position 1525, there were 178 wild-type P. falciparum isolates (99.44%) and 1 mutant isolate (0.56%), with such a mutation site identified in blood samples in 2018, and at amino acid position 1528, there were 167 wild-type P. falciparum isolates (93.30%) and 12 mutant isolates (6.70%). The proportions of wild-type P. falciparum isolates were 95.72% (134/140), 79.25% (126/159) and 95.83% (161/168) in the target amplification fragments of the three regions in the Pfap2mu gene (Pfap2mu-inner1, Pfap2mu-inner2, Pfap2mu-inner3), respectively. There were 16 different SNPs identified in all successfully sequenced P. falciparum isolates, in which 7 non-synonymous mutations were detected, including S160N, K199T, A475V, S508G, I511M, L595F, and Y603H. There were 7 out of 43 Pfap2mu-mutant P. falciparum isolates (16.28%) that harbored only one gene mutation site, in which non-synonymous mutations accounted for 28.57% (2/7). For the known delayed clearance locus S160N associated with ACTs, there were 143 wild-type (89.94%) and 16 Pfap2mu-mutant P. falciparum isolates (10.06%). CONCLUSIONS: Both Pfubp1 and Pfap2mu gene mutations were detected in P. falciparum isolates from Bioko Island, Equatorial Guinea from 2018 to 2020, with a low prevalence rate of Pfubp1 gene mutation and a high prevalence rate of Pfap2mu gene mutation. In addition, new mutation sites were identified in the Pfubp1 (E1504E and K1520E) and Pfap2mu genes (A475V and S508G).


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Polimorfismo de Nucleotídeo Único , Guiné Equatorial/epidemiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemisininas/metabolismo , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Mutação , Resistência a Medicamentos/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/uso terapêutico , Nucleotídeos/metabolismo , Nucleotídeos/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico
17.
Parasite ; 31: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315066

RESUMO

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Acaricidas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Resistência a Medicamentos/genética , Polimorfismo Genético , Aminoácidos/genética , Infestações por Carrapato/veterinária
18.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421032

RESUMO

Errors in protein translation can lead to non-genetic, phenotypic mutations, including amino acid misincorporations. While phenotypic mutations can increase protein diversity, the systematic characterization of their proteome-wide frequencies and their evolutionary impact has been lacking. Here, we developed a mechanistic model of translation errors to investigate how selection acts on protein populations produced by amino acid misincorporations. We fitted the model to empirical observations of misincorporations obtained from over a hundred mass spectrometry datasets of E. coli and S. cerevisiae. We found that on average 20% to 23% of proteins synthesized in the cell are expected to harbor at least one amino acid misincorporation, and that deleterious misincorporations are less likely to occur. Combining misincorporation probabilities and the estimated fitness effects of amino acid substitutions in a population genetics framework, we found 74% of mistranslation events in E. coli and 94% in S. cerevisiae to be neutral. We further show that the set of available synonymous tRNAs is subject to evolutionary pressure, as the presence of missing tRNAs would increase codon-anticodon cross-reactivity and misincorporation error rates. Overall, we find that the translation machinery is likely optimal in E. coli and S. cerevisiae and that both local solutions at the level of codons and a global solution such as the tRNA pool can mitigate the impact of translation errors. We provide a framework to study the evolutionary impact of codon-specific translation errors and a method for their proteome-wide detection across organisms and conditions.


Assuntos
Proteoma , Saccharomyces cerevisiae , Proteoma/genética , Saccharomyces cerevisiae/genética , Biossíntese de Proteínas , Escherichia coli/genética , Aminoácidos/genética , RNA de Transferência/metabolismo , Códon/metabolismo , Mutação
19.
J Biol Chem ; 300(3): 105726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325741

RESUMO

Hyperlipidemia predisposes individuals to cardiometabolic diseases, the most common cause of global mortality. Microsomal triglyceride transfer protein (MTP) transfers multiple lipids and is essential for the assembly of apolipoprotein B-containing lipoproteins. MTP inhibition lowers plasma lipids but causes lipid retention in the liver and intestine. Previous studies suggested two lipid transfer domains in MTP and that specific inhibition of triglyceride (TG) and not phospholipid (PL) transfer can lower plasma lipids without significant tissue lipid accumulation. However, how MTP transfers different lipids and the domains involved in these activities are unknown. Here, we tested a hypothesis that two different ß-sandwich domains in MTP transfer TG and PL. Mutagenesis of charged amino acids in ß2-sandwich had no effect on PL transfer activity indicating that they are not critical. In contrast, amino acids with bulky hydrophobic side chains in ß1-sandwich were critical for both TG and PL transfer activities. Substitutions of these residues with smaller hydrophobic side chains or positive charges reduced, whereas negatively charged side chains severely attenuated MTP lipid transfer activities. These studies point to a common lipid transfer domain for TG and PL in MTP that is enriched with bulky hydrophobic amino acids. Furthermore, we observed a strong correlation in different MTP mutants with respect to loss of both the lipid transfer activities, again implicating a common binding site for TG and PL in MTP. We propose that targeting of areas other than the identified common lipid transfer domain might reduce plasma lipids without causing cellular lipid retention.


Assuntos
Proteínas de Transporte , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos , Triglicerídeos , Humanos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Domínios Proteicos , Mutação , Relação Estrutura-Atividade , Sítios de Ligação
20.
J Biol Chem ; 300(3): 105736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336297

RESUMO

Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.


Assuntos
Substituição de Aminoácidos , Aminoácidos , Proteínas , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Sequência Conservada , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Engenharia de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Relação Estrutura-Atividade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...